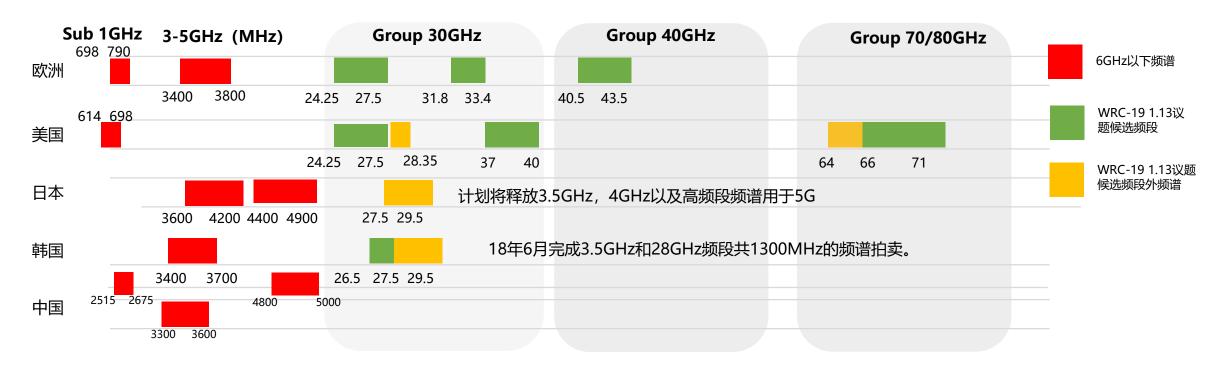


5G发展下智慧家庭新场景构建

1 5G概述

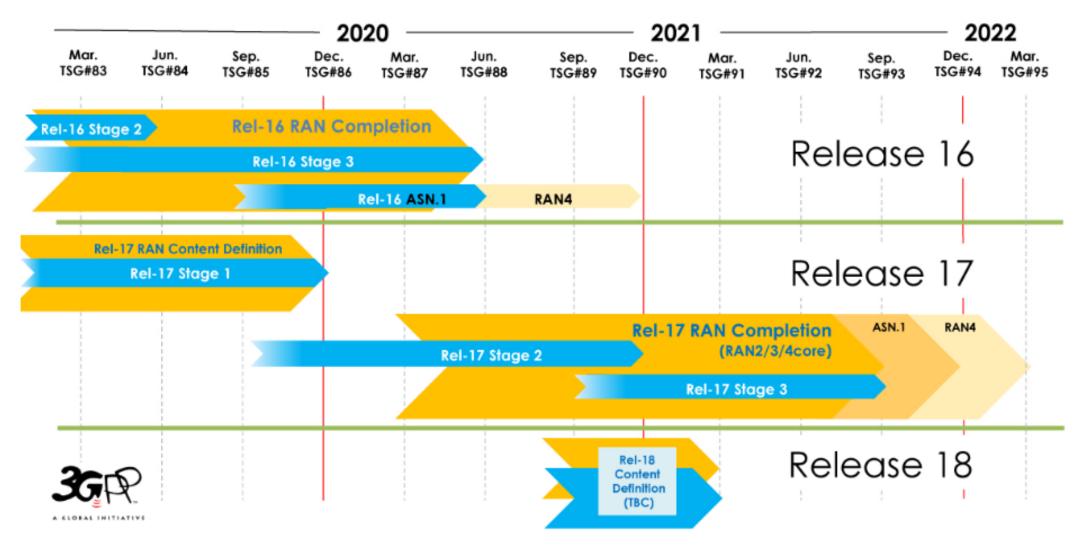
2 5G关键技术


3 5G应用场景

5G 网络发展概述

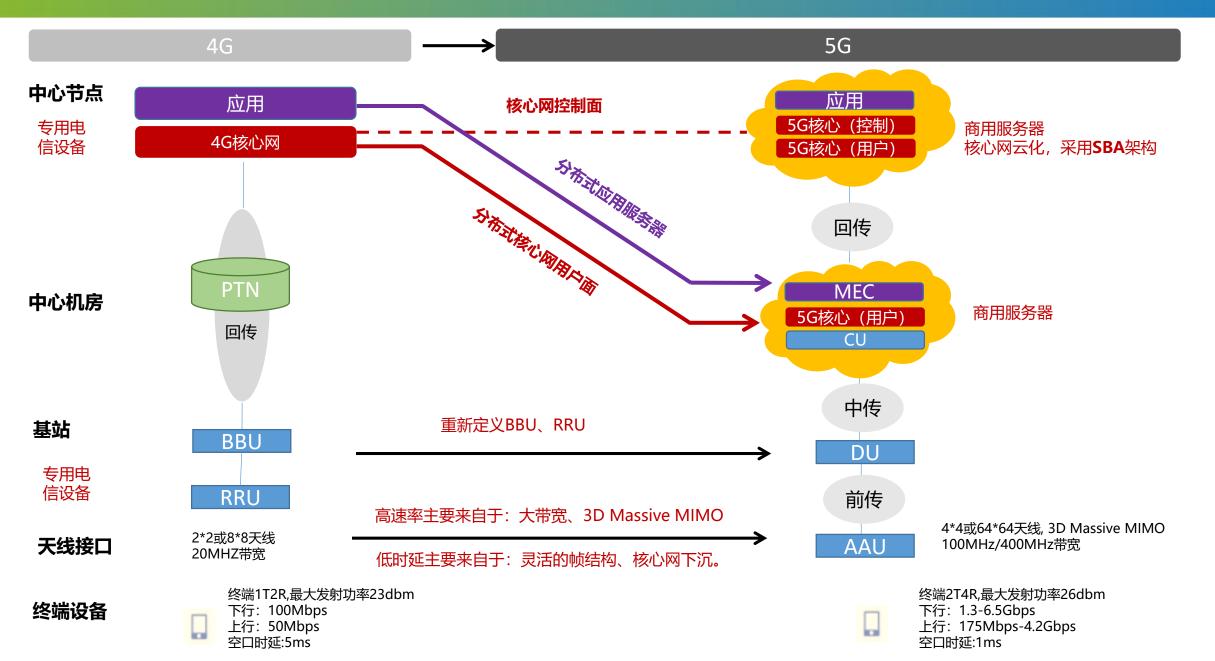
■ 5G发展,频谱先行

中国电信获得3400MHz-3500MHz共100MHz带宽的5G频率资源,中国联通获得3500MHz-3600MHz共100MHz带宽的5G频率资源。中国移动获得2515MHz-2675MHz、4800MHz-4900MHz频段的5G频率资源,其中2515-2575MHz、2635-2675MHz和4800-4900MHz频段为新增频段,2575-2635MHz频段为重耕中国移动现有的TD-LTE(4G)频段。



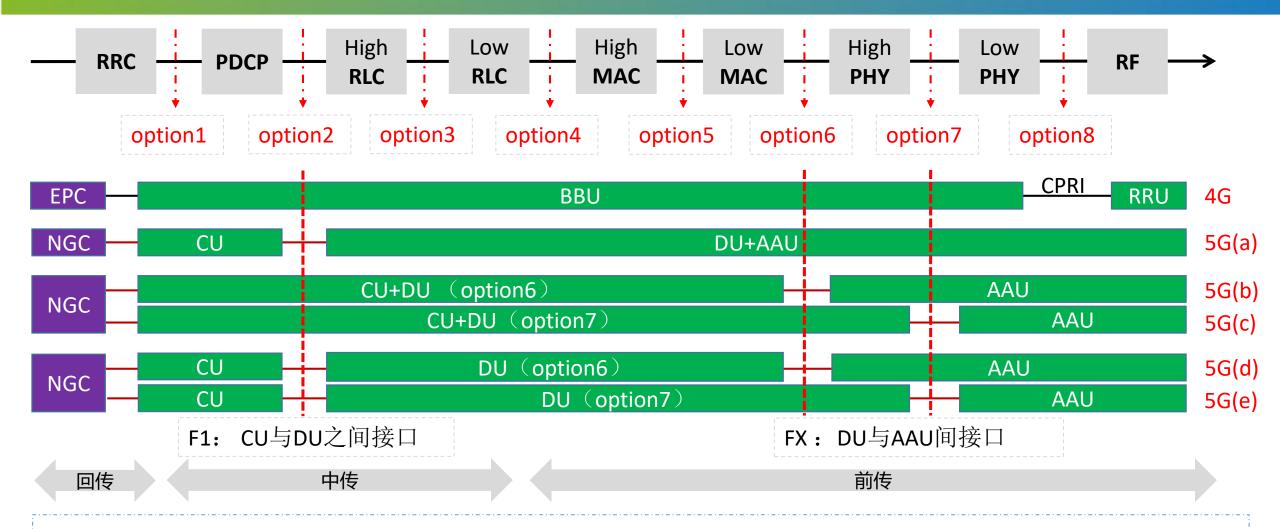
- 欧洲的频谱分配以低频和中频资源为主;美国现阶段主要集中在毫米波,但也开始关注中低频;韩国主要关注中频与毫米波;日本与美国、韩国保持一致。
- 2019年6月6日,工业和信息化部正式向包括中国电信、中国移动、中国联通、中国广电等在内的四家运营商发放了5G牌照。
- 在2019年10月31日,中国国际信息通信展览会上,工信部与三大运营商举行了5G商用启动仪式。

5G 标准最新进展



- 2018年6月,5G首版标准R15冻结;
- 2020年6月,5G第二版标准R16也将冻结(比之前的计划推迟了3个月);
- R17版本的20多个研究和工作项目,预计将于2021年中或年底完成;

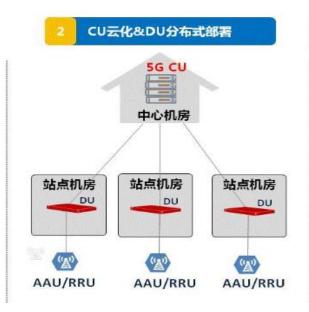
5G网络的变化

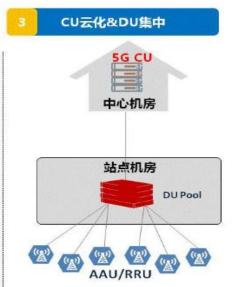

1 5G概述

2 5G关键技术

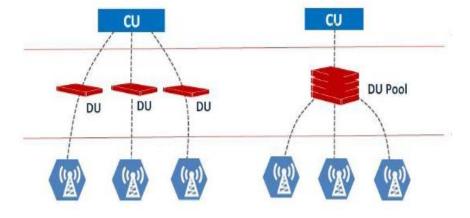
3 5G应用场景

5G关键技术-CU/DU分离


- 宏站划分:CU与DU划分明确option2,DU与AAU划分3GPP推荐option7,**整体方案推荐5G(e)**
- 小站目前无统一标准,各厂家划分标准不一致,主要考虑AAU设备成本与前传成本。目前部分厂家延续4G做法按option8标准 做,后续升级到option7或option6。**最终可选方案包括5G(c)和5G(b)**


5G关键技术-CU/DU分离

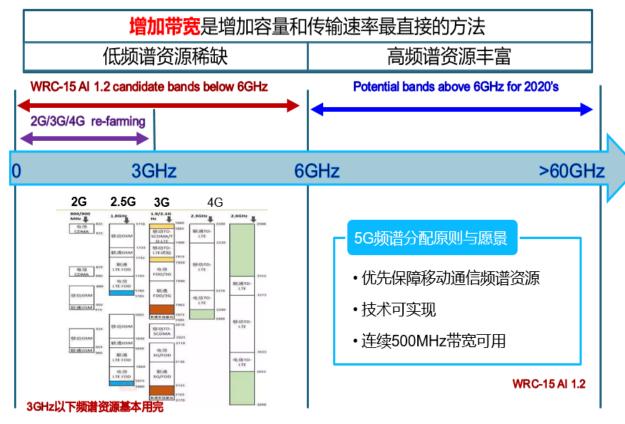
■ CU/DU分离的部署方式:

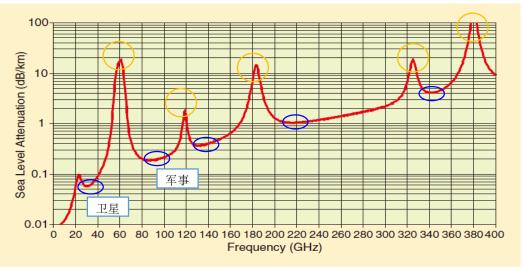

■ CU/DU分离的优点:

- 可以通过灵活的硬件部署节省成本。
- CU/DU分离架构可以实现性能协调、 话务管理、实时性能优化,可以适应 于不同场景,便于实现网络资源的实 时按需配置。
- 这样的架构更利于后续引入网络功能 虚拟化 NFV (Network Functions Virtualization) 框架,实现无线网络 设备向SDN化,白盒化方向演进。

方案1: CU和DU同位置部署或集成在一个设备中,部署在综合业务接入点,主要适用于时延需求高的业务,前传不受限,中传受限的情况。

方案2: CU、DU和RRU设备均独立部署,DU放置于综合业务接入点,CU放置于汇聚节点,主要适用于时延需求宽松的业务,对前传和中传条件均有要求。CU可采用通用硬件实现,通过CU集中组网,连接多个DU,有利于实现多小区资源池组化,可和边缘计算相关功能结合部署在边缘云机房。


方案3: CU独立部署, DU集中部署或集成在一个设备中, 主要适用于时延需求宽松的业务, 对前传和中传条件均有要求, 可实现小范围池组化。


5G关键技术-毫米波

■ 移动通信传统工作频段主要集中在3GHz以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持5G容量和传输速率等方面的需求。

毫米波 (mmWave, 30~300 GHz, 1~10 mm, 广义毫米波包含20~30 GHz)

Average millimeter-wave atmospheric absorption.

优势

- •可用频带宽,可提供几十GHz带宽
- 波束集中,提高能效
- •方向性好,适合短距离点对点通信

挑战

- 路径损耗大,不适合远程通信
- 受空气和雨水等影响较大
- 绕射能力差
- 硬件实现复杂度高

5G关键技术-大规模天线技术

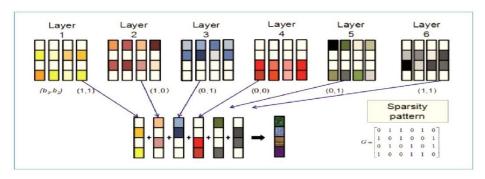
大规模天线(massive MIMO):

- 传统的TDD网络的天线通道数是2/4/8,而Massive MIMO指的是通道数达到 64/128/256。
- 传统的MIMO我们称之为2D-MIMO,信号在覆盖时,只能在水平方向移动, 而Massive MIMO是信号水平维度空间基础上引入垂直维度的空域进行利用, 使得电磁波束在空间上三维赋型。

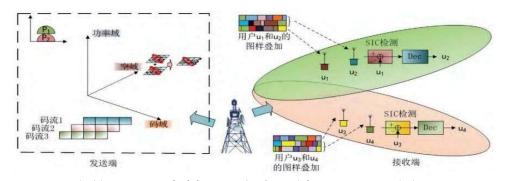
优势

- •提供丰富的空间自由度,支持空分多址
- 提供了更多的可能的到达路径,提 升信号的可靠性
- 系统容量和能量效率大幅度提升
- 用户间信道具有准正交性, 抗干扰 和噪声能力增强
- 提升频谱资源复用能力
- 降低了对周边基站的干扰

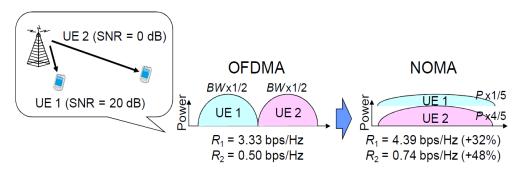
挑战


- •信道状态信息获取(导频污染问题)
- •信道测量与建模(不同场景信道)
- 发射机和接收机设计 (降低复杂度)
- •天线单元及阵列设计(低能耗天线)

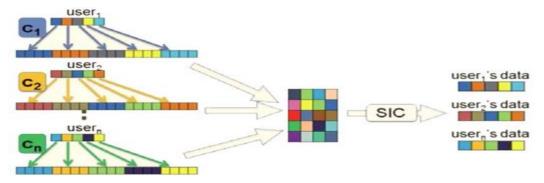
5G关键技术-新型多址


5G在简化系统设计及信令流程方面提出了很高的要求,这些都将对现有的正交多址技术形成严峻挑战。

■ 稀疏码分多址接入SCMA


它将低密度码和调制技术相结合,不同用户基于分配的码本进行信息传输。由于采用非正交稀疏编码叠加技术,在同样资源条件下可以支持更多用户连接,利用多维调制和扩频技术,单用户链路质量大幅度提升。

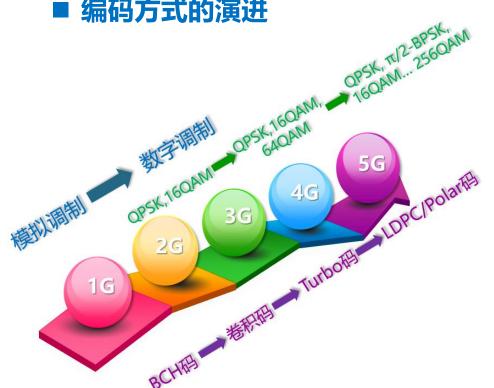
■ 图样分割多址接入PDMA


PDMA以用户信息理论为基础,在发送端利用图样分割技术对用户信号进行合理分割,在接收端进行相应的串行干扰消除,可以逼近多址接入信道的容量界限。

■ 非正交多址接入NOMA

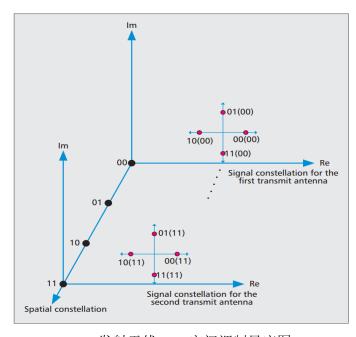
NOMA将3G时代的非正交多用户复用原理与4G OFDM技术相融合,在时域、频域、码域基础上增加了功率域,利用每个用户的不同路径损耗来实现多用户复用。用复杂度来换取容量。

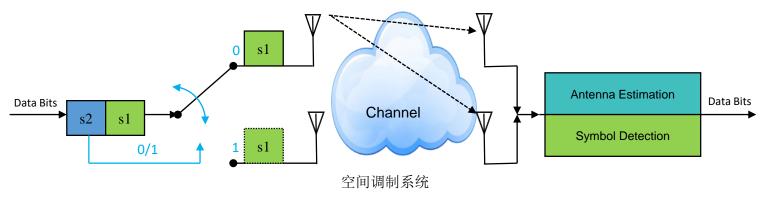
■ 多用户共享接入MUSA


MUSA是一种基于码域叠加的多址接入方案,对于上行链路,将不同用户的已调符号经过特定的扩展序列扩展后在相同资源上发送,接收端采用SIC接收机对用户数据进行译码。

5G关键技术-先进编码与调制技术

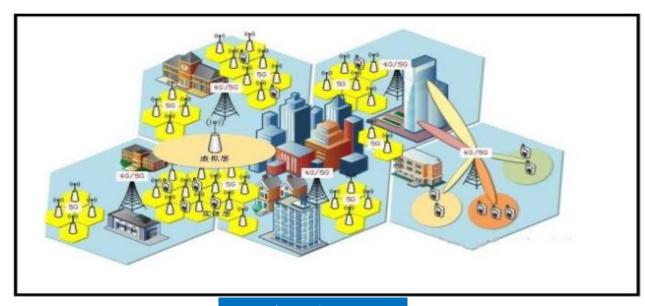
调制方式的演进


■ 编码方式的演进


在5G编码之争中,华为主导的Polar码最终成 为5G控制信道编码标准。这标志着中国通信 厂商在5G时代有了更高的话语权,也体现出 中国通信技术实力越发强大。

空间调制(Spatial Modulation)

- 以天线的物理位置来携带部分发送 信息比特,将传统二维映射扩至三 维映射, 提高频谱效率。
- 以下是一个简单模型: 每时隙只有 一根发射天线处于工作状态,避免 了信道间干扰与天线同步发射问题, 且系统仅需一条射频链路,有效地 降低了成本。


4发射天线QPSK空间调制星座图

5G关键技术-超密集组网

为了满足热点高容量场景的高流量密度、高峰值速率和用户体验速率的性能指标要求,基站间距将进一步缩小,各种频段资源的应用、多样化的无线接入方式及各种类型的基站将组成宏微异构的超密集组网架构。

主要问题

• 系统干扰问题

在复杂、异构、密集场景下,高密度的无线接入站点共存可能带来严重的系统干扰问题,甚至导致系统频谱效率恶化。

· 移动信令负荷加剧

随着无线接入站点间距进一步减小, 小区间切换将更加频繁, 会使信令消耗量大幅度激增, 用户业务服务质量下降。

· 系统成本与能耗增加

引入大量密集无线接入节点、丰富的频率资源及新型接入技术, 带来系统部署运营成本和能源消耗增加。

解决方案

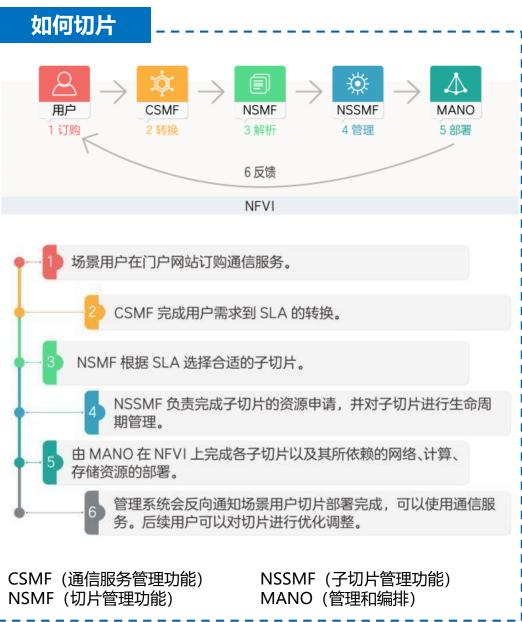
· 宏基站 + 微基站部署模式

在业务层面,由宏基站负责低速率、高移动性类业务的传输,微基站主要承载高带宽业务。由宏基站负责覆盖以及微基站间资源协同管理,微基站负责容量的方式来实现控制与承载的分离。

• 微基站 + 微基站部署模式

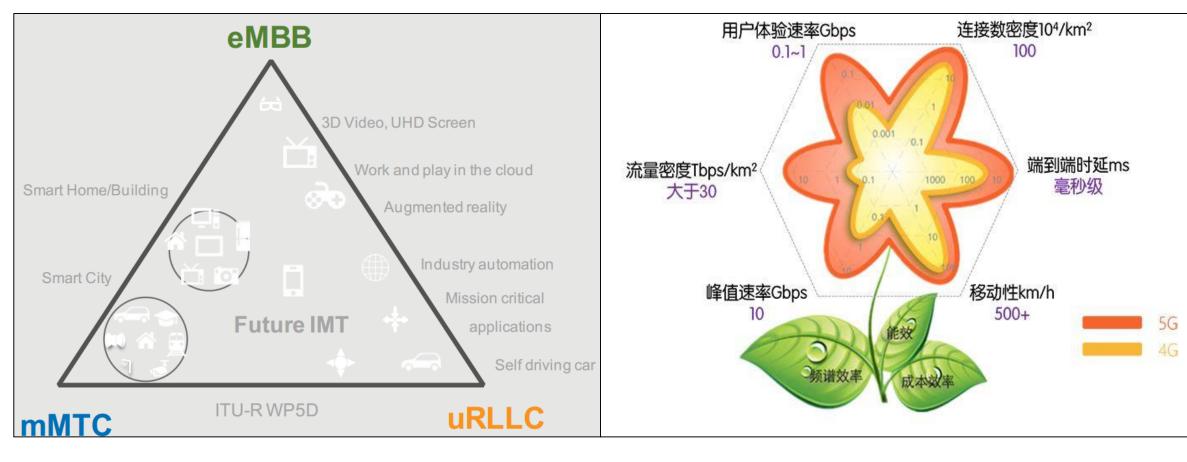
为了能够实现类似于宏基站+ 微基站模式下宏基站的资源协调功能,需要由微基站组成的密集网络构建一个虚拟宏小区。虚拟宏小区的构建,需要簇内多个微基站共享部分资源(包括信号、信道、载波等),此时同一簇内的微基站通过在此相同的资源上进行控制面承载的传输,以达到虚拟宏小区的目的。同时,各个微基站在其剩余资源上单独进行用户面数据的传输,从而实现5G超密集组网场景下控制面与数据面的分离。

5G关键技术-网络切片



网络切片是一种按需组网的方式,可以让运营商在统一的基础设施上切出多个虚拟的端到端网络,每个网络切片从无线接入网到承载网再到核心网在逻辑上隔离,适配各种类型的业务应用。在一个网络切片内,至少包括无线子切片、承载之切片和控心网子切片。

SLA (服务等级协议) 为特定的通信服务类型选择它所需要的虚拟和物理资源。 SLA包括用户数、QoS、带宽等参数,不同的SLA定义了不同的通信服务类型。


1 5G概述

2 5G关键技术

3 5G应用场景

5G 应用场景

国际标准化组织3GPP定义了5G的三大场景:

eMBB指3D/超高清视频,AR/VR等大流量移动宽带业务;

mMTC指大规模物联网业务;

URLLC指如无人驾驶、工业自动化等需要低时延、高可靠连接的业务。

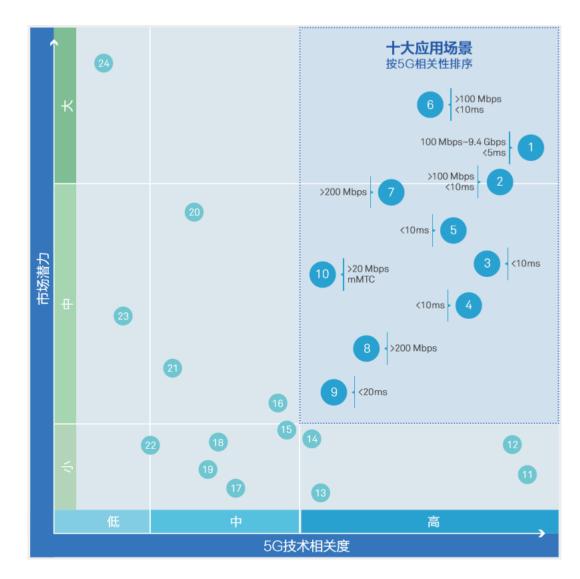
用户体验速率: 0.1-1Gbps

连接密度: 1百万/km²

端到端时延: 毫秒级

峰值速率: 10Gbps

移动性: >500km/h


流量密度: >30Tbps/km²

5G十大应用场景

根据相关分析数据,从5G技术相关度和市场潜力两个维度对5G应用场景进行分析,得出5G十大应用场景。

- **云VR/AR** 实时计算机图像旋绕
 和建模
- 2. **车联网** 远程驾驶、编队行驶、 自动驾驶
- 3. 智能制造 无线机器人云端控制
- 4. 智慧能源 馈线自动化
- 5. **无线医疗** 具备力反馈的远程诊断
- **6. 无线家庭娱乐** 超高清8K视频和 云游戏
- 7. 联网无人机 专业巡检和安防
- 8. 社交网络 超高清/全景直播
- 9. 个人AI辅助 AI辅助智能头盔
- 10. 智慧城市 AI使能的视频监控

- 11. 全息
- 12. 无线医疗联网 远程手术
- 13. 无线医疗联网 救护车通信
- 14. 智能制造 工业传感器
- 15. 可穿戴设备 超高清穿戴摄像机
- 16. 无人机 媒体应用
- 17. 智能制造 基于云的AGV
- 18. 家庭 服务机器人 (云端AI辅助)
- 19. 无人机 物流
- 20. 无人机 飞行出租车
- 21. 无线医疗联网 医院看护机器人
- 22. 家庭 家庭监控
- 23. 智能制造 物流和库存监控
- 24. 智慧城市- 垃圾桶、停车位、路灯、 交通灯、仪表

泛营商典型应用

。而向个人提供旅动VR

。2019年VR眼镜插手机

- 2020年5G模组一体机

体育场 4K直播视频流

车辆间的视频传输

4K视频监控

人脸识别系统

远程建筑视频流

HD 高密度地区图片分享 4K 沅程医疗视频流

4K/360 VR视频流

日

本

+布局VR平台和内容

- 为个人提供移动流量

其他业务

+无人机(安全)

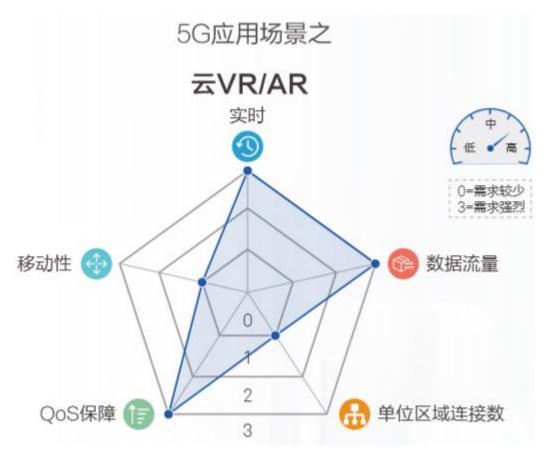
+ Cloud PC

从全球运营商来看,典型应用包括:

超高清流媒体(VR/AR、云游戏、高清视频、直播)、无线宽带、云上 电脑、车联网(自动驾驶)、无人机、智能制造、安防监控等。

电子竞技视频直播

自动驾驶车辆动态地图分发


网联车辆

网联车辆

国家	运营商	布局场景				对外合作情况
韩国	KT	VR/AR	车联网	无人机	安防监控	三星、爱立信、诺基亚
	SKT	VR	车联网	直播		三星、爱立信、诺基亚
	LG U+	VR		无人机	云上电脑	华为、三星、诺基亚
日本	Docomo	视频流	车联网	直播	远程控制	华为、诺基亚
	AU		车联网	直播	远程控制	安立信、三星
	Softbank		车联网		机器人控制	华为、中兴、爱立信
美国	Verizon	无线宽带				爱立信、三星、高通
	AT&T	无线宽带	车联网	高清视频		高通
	T-Mobile	AR				爱立信、诺基亚、高通
中国	电信	VR/AR 直播、教育、旅游	车联网 警务、交通	党建	智能制造	华为
	联通	VR/AR 教育、新媒体	无人车 无人机	智能制造 医疗	4K/8K高清视频	BAT、华为、中兴、爱立 信、诺基亚贝尔、英特尔

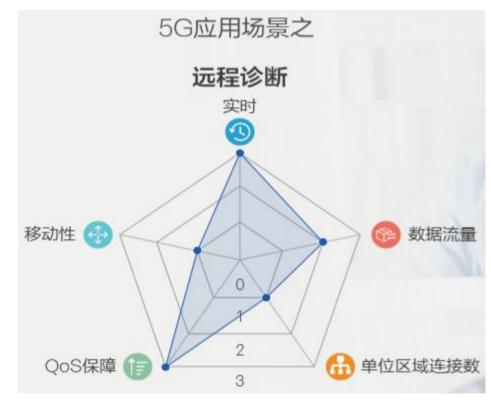
虚拟现实(VR)与增强现实(AR)需要大量的数据传输、存储和计算功能,这些数据和计算密集型任务如果转移 到云端,就能利用云端服务器的数据存储和高速计算能力。满足用户日益增长的体验要求的同时降低了设备价格。

教学

通过VR/AR/MR课堂实现3D 教学体验,将抽象的内容具 象转化为立体动态内容,增 强学习乐趣,提升教学效果。

安保人员可将位置信息和实时 画面上传到控制平台,同时获 取平台下发的指令和信息。 游戏

通过佩戴VR/AR眼镜,将游戏中的虚拟场景与现实世界结合,提升感官体验、打破地域限制。


购物

利用AR/VR设备进行远程看房、 模拟家装、虚拟试用(试驾) 等,体验效果更直观化。

随着人口老龄化的来临,独居老人增多,更先进的医疗水平成为老龄化社会的重要保障;我国城市医疗资源紧张, 偏远乡村得不到必要的医疗服务,医疗资源分布不均。5G将为智慧医疗提供所需的连接。



无线内窥镜和超声波这样的远程诊断 依赖于设备终端和患者之间的交互。 力反馈的敏感性决定低延迟网络才能 满足需求。

患者可通过便携式5G医疗终端和云端医疗服务器与远程医疗专家进行沟通,随时随地享受医疗服务。

借助5G、人工智能、云计算技术,医生可以通过基于视频与图像的医疗诊断系统,为患者提供远程实时会诊、应急救援指导等服务。

通过5G和物联网技术提供医疗设备和移动用户的全连接网络,对无线监护、移动护理和患者实时位置等数据进行采集与监测,并在医疗服务平台上进行分析处理,提升医护效率。

当前4K/8K 超高清视频与5G技术结合的场景不断出现,广泛应用于观看点播视频、云游戏、超高清/全景直播等领域,成为市场前景广阔的基础应用。

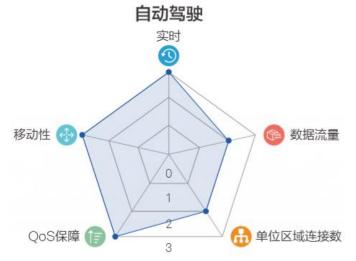
带宽越高,视频流质量越好。高清电视和云游戏在高峰使用时间内也必须保证可靠的连接。5G可以应对网络容量这一重大挑战。

5G有望以90 fps的速度提供响应式和 沉浸式的4K游戏体验,这将使大部分 家庭的数据速率高于75Mbps,延迟低 于10毫秒。

通过个人可穿戴设备来更新自己的家庭和朋友社交网络,这些可穿戴设备可以实时视频直播,甚至是360°视频直播,分享运动、步数、甚至他们的心情。

智慧城市的竞争优势,在于他可以主动的应对城市居民和企业的需求。视频监控服务在智慧城市中扮演了核心的角 <u>色,他不仅提高了安全性,而且也大大提高了企业和机构的工作效率。</u>

最新的视频监控摄像头有很多增强的特性,如高 | 帧率、超高清和宽动态范围摄像(能够在很差的 | 照明条件下成像),这些特性将产生大量的数据 | 流量。


- 繁忙的公共场所 (广场、活动中心、学校、医院)
- 商业领域(银行、购物中心、广场)
- 交通中心(车站、码头)
- 主要十字路口
- 高犯罪地区
- 机构和居住区
- 防洪 (运河、河流)
- 关键基础设施(能源网、电信数据中心、泵站)
- 突发事件处理人员的可穿戴摄像头和车载摄像头

5G + 车联网

传统汽车市场将彻底变革,因为对于汽车来说联网的作用超越了传统的娱乐和辅助功能,成为道路安全和汽车革新的关键推动力。驱动汽车变革的关键技术 —— 自动驾驶、编队行驶、远控驾驶等都需要安全、可靠、低延迟和高带宽的连接,这些连接特性在高速公路和密集城市中至关重要,只有5G可以同时满足这样严格的要求。

通过5G网络与相关技术,把实时路况、周边车辆等数据结合,让车辆自动选择合适路线与车速,实现无人驾驶,提升交通效率。

卡车或货车的自动编队行驶比人类驾驶 员更加安全。车辆之间靠的更近,从而 节省燃油,提高货物运输效率。相邻车 辆之间进行直接或车路通讯。

车辆由远程控制中心的司机驾驶, 使乘客可以在途中工作或参加会议, 也适用于无驾照人员, 或者生病、醉酒等不适合开车的情况。

谢谢!